Wood Preservation

WOOD 474 October 7, 2013

Dr. Rod Stirling
FPInnovations
rod.stirling@fpinnovations.ca

Durable Wood Products

- Naturally Durable Wood
 - Extractives
- Treated Wood
 - Biocides
- Modified Wood
 - Altered wood chemistry

Use Category System

Use Category	Service Conditions	Hazards	Example		
1	Interior, dry	Insects	Millwork		
2	Interior, damp	Insects, Decay	Sill plates		
3	Exterior, above ground	Insects, Decay	Decking		
4	Exterior, ground contact	Insects, Decay	Posts		
5	Marine exposure	Insects, Decay, Marine borers	Piling		

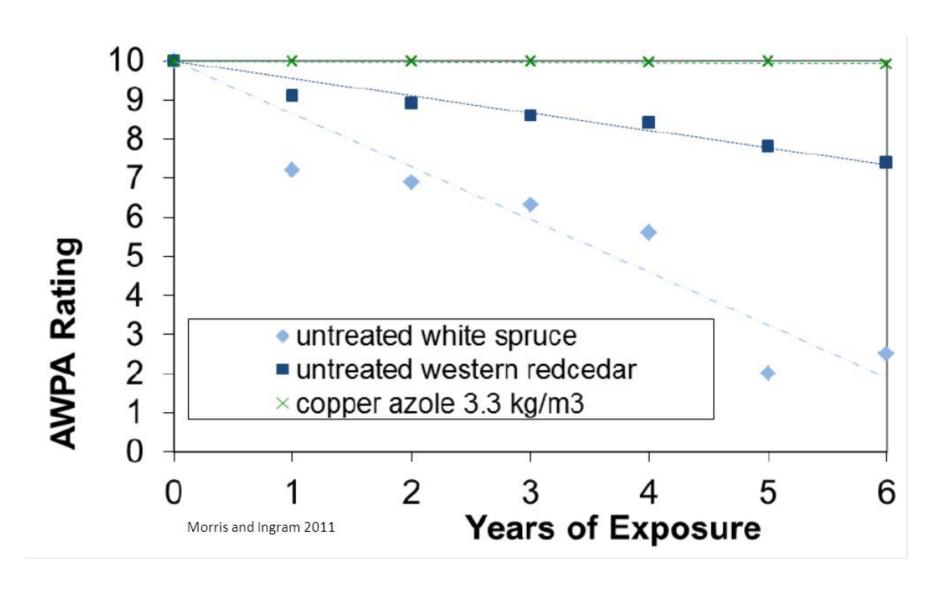
Naturally Durable Wood

- All sapwood is non-durable
- Heartwood durability variable
- Durability caused by presence of extractives
- Major naturally durable species in Canada:
 - Western redcedar
 - Yellow-cedar
 - Eastern white cedar

- Some tropical hardwoods have very high natural durability
 - Common names may describe several species

Western Redcedar Extractives

- Extractives increase from pith to bark and from crown to base
 - Lower, outer heartwood generally most durable
- Second growth has similar durability to old growth
- Major extractives groups in WRC heartwood
 - Thujaplicins
 - Highly toxic to decay fungi in vitro
 - Rapid depletion in wood products
 - Poor correlation with durability in lab and field tests
 - Lignans
 - Moderately toxic to decay fungi in vitro
 - Slow depletion in wood products
 - Moderate correlation to durability in field tests
 - Terpenes
 - No known toxicity or relationship to durability



Western Redcedar Uses

- Valued for durability, dimensional stability and appearance
- Often used in above-ground, exterior exposures
 - Decking
 - Fencing
 - Siding
 - Shingles

Western Redcedar Performance

Wood Preservatives

- Industrial Preservatives
 - Creosote
 - Pentachlorophenol
 - Arsenicals (CCA, ACZA)
- Residential Preservatives
 - Copper amine preservatives
 - Micronized copper preservatives
 - Carbon-based preservatives (above ground only)
 - Borates (interior only)
 - CCA (restricted uses)

Industrial Preservatives - Creosote

- Byproduct of coke production for steel making
- Used neat or in heavy oil solution
- Contains hundreds of chemicals
 - Including polycyclic aromatic hydrocarbons
 - Some are known carcinogens
- Restricted to industrial uses
 - Mostly used for railway ties,
 poles and piling

Industrial Preservatives - Pentachlorophenol

CI CI CI

- Synthetic chlorinated phenol
- Oil-based preservative
- Environmental concerns from dioxins and furans present as contaminants
- Restricted to industrial uses
 - Mostly used for poles and large timbers

Industrial Preservatives - Arsenicals

- ACZA: Ammoniacal Copper Zinc Arsenate
- CCA: Chromated Copper Arsenate
 - Highly effective, waterborne preservative
 - Use in residential construction restricted in 2003 due to concerns about use in playground equipment
 - Largely used poles and timbers
 - Permitted for shingles, plywood and preserved wood foundations in residential construction

Residential Preservatives – Copper Amine Systems

- ACQ: Alkaline copper quaternary
 - Copper ethanolamine + quaternary ammonium compound
- CA: Copper azole
 - Copper ethanolamine + tebuconazole
- Effective against fungi and insects
- Dominant in Canada
- Corrosive

Residential Preservatives – Micronized Copper Systems

- Copper present as small "micronized" particles of basic copper carbonate
- MCQ: Micronized Copper Quat
- MCA: Micronized Copper Azole
- Dominant in US
- Introduced to Canada in 2012

Residential Preservatives – Carbon-Based Preservative Systems

- Metal-free, "organic" in chemical sense
- In Canada:
 - FIM-1
 - Quaternary ammonium compounds
 - Wolman AG
 - Tebuconazole, Propiconazole, Quaternary ammonium compounds
- Effective against basidiomycetes
- US formulations add insecticides to control termites
- Presently restricted to above-ground uses

Residential Preservatives - Borates

- Controls fungi and insects
- Diffuse into wood
- Highly leachable
 - Not suitable for wet exposures
 - UC1 and UC2 only
- Used in remedial treatments
 - Borate glycols
 - Borate rods
- Zinc borate used to treat OSB

Wood Treatability

- Sapwood generally treatable
- Heartwood more difficult to treat

Species	Treatability			
Douglas-fir (coastal)	Moderately Difficult			
Western hemlock	Moderately Difficult			
Lodgepole pine	Difficult			
White spruce	Difficult			
Western redcedar	Very Difficult			
Southern pine, Radiata pine	Least difficult			

Incising

- Improves preservative penetration
- Necessary for many Canadian species to meet standards for penetration

Treatment Quality

- Retention
 - Gauge
 - Assay
- Penetration
 - Total distance
 - % of sapwood

Pressure Treatment Processes

- Full cell
 - Initial vacuum, add preservative, pressure, final vacuum
 - Leaves preservative in wood cell
 - Maximum uptake
 - Used primarily for water-based preservatives

<u>Demo video</u>

- Empty cell
 - Add preservative, pressure, final vacuum
 - Pulls preservative out of cell lumen
 - Limits uptake
 - Used primarily for oil-based preservatives

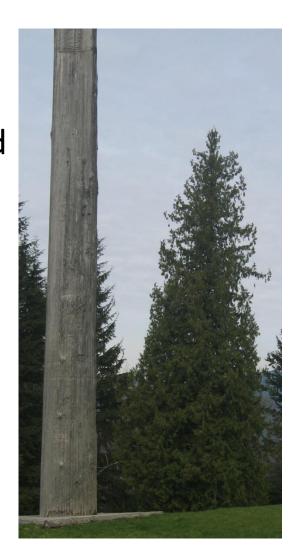
Non-Pressure Processes

- Generally limited penetration
- Dip/diffusion treatments can work for borates which diffuse into wood
- Tru-core® is a patented process that uses buffered amine oxides to drive preservatives into wood
 - Not yet available in Canada

End Cut Preservatives

- Untreated wood exposure during cutting or drilling needs protection
- Brush on end cut preservatives available
 - Copper naphthenate (exterior, green)
 - Zinc naphthenate (exterior, colourless)
 - Borates (interior)

Regulation


- Must be registered with Health Canada's Pest Management Regulatory Agency (PMRA)
 - Reviews comprehensive data package and publishes label that describes legal uses of wood preservatives
 - PMRA Label Search

Standardization

- Canadian Standards Association (CSA)
 - CSA O80 Standard on Wood Preservation
- American Wood Protection Association (AWPA)
 - Annual Book of Standards

Environmental Performance

- Wood should last long enough to grow replacement fibre
 - e.g. pole produced from 60 year old tree should last 60 years
 - Preservation required
- LCAs published on performance of treated wood relative to competitive products

Life Cycle Assessments for Treated Wood

PT Wood	Alternative	GHG	Fossil fuel	Water usage	Acid rain	Smog	Eutroph -ication	Ecol. Impact
ACQ lumber	WPC	(6)	6		6	(4)	(6)	
CCA piling	Steel, concrete, plastic	(6)			(6)	6		
CCA guard rail post	Steel	6	(6)		6	6		(6)
Borate lumber	Steel					C. C.		5.
Penta pole	Steel, concrete, composite	311>	3112	3012	311>		3112	3112

Caveats

- Treated wood has a very positive environmental story IF:
 - The wood comes from sustainably managed forests
 - It meets service life expectations
 - Preservatives are applied properly
 - Used wisely
 - There are options of end of service life disposal

Thermal Wood Modification

- Thermal modification
 - Conditioned in kilns around 200°C
 - Anoxic heating (e.g. steam, nitrogen, oil)
- Thermally modified wood
 - Increased durability
 - Increased stability
 - Darker colour
 - Through-treated

Acetylation

Wood reacted with acetic anhydride

- Improved dimensional stability
- Increased durability
- Requires full penetration
- Marketed as Accoya[®],
 Perennial Wood[®]

Furfurylation

- Wood reacted with furfuryl alcohol
- OH

- Crosslinking
- Increased durability, hardness
- Dark colour
- Requires full penetration
- Marketed as Kebony®

Chemically Modified Wood

- Pros
 - No biocides
 - Enhanced durability
 - Improvements in other properties (e.g. stability, hardness)

- Cons
 - Expensive
 - Requires full penetration
 - Limited availability in Canada

Activity

- Scenario 1: Decking in Vancouver
- Scenario 2: Resource road bridge in Prince George
- Scenario 3: Marine piling off Vancouver Island
- Scenario 4: Framing lumber in Louisiana

- What is the hazard?
- What is the Use Category?
- What preservative(s) would you recommend?